Impacts of Regenerative Ag on Water Storage and Soil Health

Katie L. Lewis Associate Professor Soil Fertility and Chemistry

Texas Groundwater Summit 31 August 2022

Collaborators: Joseph Burke, Christopher Cobos, Paul DeLaune, and Wayne Keeling

TEXAS TECH UNIVERSITY Agricultural Sciences & Natural Resources Davis College

Introduction

Soil health is the continued capacity of soil to function as a vital living ecosystem that sustains plants, animals, and humans.

Includes both <u>inherent</u> and <u>dynamic</u> soil characteristics

Introduction

NRCS Soil Health Management -

Manage more by disturbing soil less

Keep the soil covered as much as possible

Keep a living root growing throughout the year

Diversify soil biota with plant diversity

<u>Common soil health management practices on the THP -</u>

Reduced or no-tillage

Cover crops

Crop rotations

Regenerative Ag has not been defined.

Research Program

Demonstrate and quantify the improvements in soil chemical, physical, and biological properties (soil health) following the long-term adoption of conservation management in agricultural production systems

The Southern High Plains climate

RESEARCH

Potential evapotranspiration (PET)
Average annual PET exceeds precipitation by 2-3 times

Long-term sites

<u>Cropping system location -</u> Agricultural Complex for Advanced Research and Extension Systems (AG-CARES) - Lamesa, TX

<u>Native system location -</u> Wellman native range site – near Wellman, TX

Soil type at both sites:

• Amarillo fine sandy loam (fineloamy, mixed, superactive, thermic Aridic Paleustalf)

Amarillo fine sandy loam

Benchmark soil series with extensive distribution on the Texas Southern High Plains

Primary uses: rangeland and agricultural production

Fine-loamy, mixed, superactive, thermic Aridic Paleustalf

Sand - 80%, Silt - 9%, and Clay - 11%

CEC - $10 \text{ cmol}_{c} \text{ kg}^{-1}$ pH - 7.8 (7.2 in no-till with cover crop plots) Soil organic C - 2.0 g kg⁻¹

The experimental design

Research plot design at Ag-CARES in Lamesa, TX

Evaluated systems

Continuous cotton systems – (est. 1998)

- Conventional tillage, winter fallow (CT)
- No-tillage, Rye cover (R-NT), 30 lb/acre
- No-tillage, Mixed cover (M-NT), 30 lb/acre
 - Rye (50%)
 - Austrian Winter Pea (33%)
 - Hairy Vetch (10%)
 - Radish (7%)
 - by weight
 - Established in November 2014
- NRCS recommended mixture Native Systems (NAT)
- Rangeland historical record indicates it unplowed at least 80 years
 RCBD with three replications

Cotton agronomy timeline

Months of the Year

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Traditional cotton agronomy timeline:

Fallow	Cotton growing season	Fallow
--------	-----------------------	--------

Conservation cotton agronomy timeline:

Cover crop biomass

Soil health

RESEARCH 1.0 Yield C mineralization 0.5 B-Gluce 0.0 soc -0.5

TEXAS A&M

1.5

0.0

0.5

1.0

-0.5

PC 2 (21.13%)

-1.0 -

-1.5

-1.0

Cotton lint yield

CT, conventional tillage, winter fallow; R-NT, no-tillage, rye cover; M-NT, no-tillage, mixed species cover

Cotton water use efficiency

2015-2017

	Water use efficiency		
	2015	2016	2017
Cropping system	lb lint A^{-1} in $^{-1}$		
Conventional tillage, winter fallow	33.0	38.0	58.9
No-tillage rye cover	33.6	31.0	44.4
No-tillage mixed species cover	31.7	34.7	49.7
P-value	0.641	0.780	0.063
	0		

Burke et al., 2021, Soil Till. Res., 208, 104869.

2018-2020

	Water use efficiency		
	2018	2019	2020
Cropping system	lb lint A ⁻¹ in ⁻¹		
Conventional tillage, winter fallow	54.6	37.0	43.7
No-tillage rye cover	55.9	33.5	32.9
No-tillage mixed species cover	47.7	37.5	34.8
P-value	0.258	0.780	0.141

Burke et al., 2022, Agronomy, 12, 1306.

No differences in cotton water use efficiency between traditional and conservation practices since 2015

Soil water

Soil water at depth

Date (November 2018 – November 2020)

Stages of soil water

Period of increased soil water near planting from precipitation and/or deficit irrigation

Period of decreased soil water during growing season as cotton develops vegetatively

Period of increased soil water as cotton vegetative growth and water demand decreases

Volumetric water content (θ)

Overcoming yield reduction: N management RESEARCH

	Nitrogen fertilization strategies			
Cropping System	FP	PPN	PEN	PHSN
		Lint Yie	eld (lb/a)	
CC	723	787 (8.9%)	715 (-1.1%)	683 (-5.5%)
CCRC	806	938 (16.4%)	964 (19.6%)	856 (6.2%)
CWR	1134	1032 (-9.0%)	1117 (-1.5%)	1064 (-6.2%)

Fertilization strategies:

- FP = farmers practices (120 lb N/a)
- PPN = FP + 30 lb N/a preplant
- PEN = FP + 30 lb N/a post emerg. + 2 wks
- PHSN = FP + 30 lb N/a pinhead square + 2 wks

Cropping systems:

- CC = Continuous cotton, conventional tillage (>25 yrs)
- CCRC = Continuous cotton-Rye cover
- CWR = Cotton-Wheat rotation

Carbon and Cotton Systems

II

III

Helms Farm, Halfway, TX

Evaluate the impacts of conservation tillage, cover cropping and crop rotations on soil C, cotton yield and economic return

Helm Farm, Halfway, TX (Established in 2013)

Pullman clay loam Sand - 20%, Silt - 50%, and Clay - 30%

Benchmark soil series with extensive distribution on the Texas Southern High Plains Google Earth

Soil Organic C (Helm Farm, est. 2013)

Research Center, Lubbock, TX Est. 2015, Acuff loam

- Cover crops and no-tillage systems implemented in November of 2015
 - Site had been under conventional tillage for at least 60 years
- Study design Split Plot (3 reps)
- Main plot: tillage systems
 - No-tillage with a winter wheat cover crop (NTW)
 - No-tillage winter fallow (NT)
 - Conventional tillage winter fallow (CT)
- Split Plot: nitrogen (N) treatments
 - 100% pre-plant (PP)
 - 40% pre-plant 60% side-dressed (SPLIT)
 - No-N control

Lubbock Research Center, Lubbock, TX Est. 2015, Acuff loam

Year, Season, and Tillage System

Conventional tillage CO₂-C emissions

• 0.87 tons C acre⁻¹

No-tillage with wheat cover <u>net</u> C flux

• 0.67 tons C acre⁻¹

Average decrease in CO_2 -C emissions with the inclusion of wheat cover with no-tillage

- 22%
- 379 lb C acre⁻¹

Lubbock Research Center, Lubbock, TX Est. 2015, Acuff loam

AG-CARES, Lamesa, TX Amarillo fine sandy loam [80% sand, 10% silt, & 10% clay]

Long-term Tillage, Est. 1998 Continuous Cotton (CC), Conventional Tillage (CT) Rye and Mixed Species Cover, No-Tillage (NT)

CC, CT >25 years Cotton-Wheat Rotation, NT Est. 2014 2020 – Wheat

2021 – Cotton

2020 – Cotton 2021 – Wheat

CC, Rye Cover, NT Est. 2014

Irrigation Base Base + 33% (high)

Base - 33% (low)

Soil organic C (AG-CARES, est. 1998)

а

Native rangeland

Cropping System

Soil organic C (AG-CARES, est. 2014)

Conservation Management Corn Systems

Steve and Zach Yoder Dallam County Dallam loamy fine sand

Braden Gruhlkey Randall County Pantex silty clay loam

Kelly Kettner Parmer County Amarillo fine sandy loam

TEXAS A&M

Soil Organic C (est. 2017)

Samples collected in April 2020

Summary

Benefits and consequences of our conservation cotton cropping systems

2022 Research

Project aimed at establishing baseline carbon values across Texas

IFE

Contact me: 361-815-3836 katie.lewis@ag.tamu.edu

Sustainable Agricultural Intensification and Enhancement Through the Utilization of Regenerative Agricultural Management Practices

AM AT

T WT

KANSAS STATE

TEXAS A&M

RESEARCH

Texas Water

Resources Institute

TEXAS A&M

United States Department of Agriculture National Institute of Food and Agriculture

Regenerative Ag Systems

- Our project goal is to intensify agricultural production in an environmentally sustainable manner that enhances the agronomic, economic, and community resiliency in the Southern Great Plains.
- We will achieve this by successfully demonstrating the benefits of integration of *regenerative agricultural practices* and providing training on emerging technologies to increase C sequestration, reduce greenhouse gas (GHG) emissions, mitigate climate change impacts, diversify producer income, conserve scarce water, and enhance rural economies.

Regenerative Ag Systems

- Practices include reduced tillage, crop rotations, cover cropping, and grazing
- Practices aim to increase crop and livestock production resiliency and sustainability while reducing negative environmental impacts
- Regenerative agriculture in semi-arid environments can be defined as intensification of production systems through implementation of conservation practices (e.g. reduced tillage, cover crops, and livestock) to increase economic and environmental resiliency and sustainability

Regenerative Ag Systems

To address project goals, the key objectives are to:

- 1. identify adoption barriers of regenerative practices and pathways to overcome them;
- 2. increase understanding of field level processes, effects, and optimization of agricultural intensification using regenerative practices;
- 3. quantify the watershed/regional scale effects of regenerative practice adoption;
- 4. evaluate economics of regenerative practice adoption at farm and regional scales;
- 5. enhance adoption via dissemination of knowledge gained from Obj. 1-4.

Katie L. Lewis *Associate Professor* Soil Chemistry and Fertility <u>katie.lewis@ag.tamu.edu</u> 361-815-3838

THANK YOU

Department of Plant & Soil Science

